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LETTER TO THE EDITOR 

Quantum correspondence of cyclotron and synchrotron 
radiation 

R Lieu 
Department of Physics, The University of Calgary, Calgary, Alberta, Canada, T2N 1N4 

Received 8 December 1983 

Abstract. The quantum origin of cyclotron and synchrotron radiation is considered. The 
radiation is assumed to be due to first-order transitions of electrons between Landau levels. 
A conflict is found in the following sense: (i) agreement between the classical and quantum 
emission coefficients (at large quantum numbers) is obtained by allowing the radial position 
of the guiding centre (label 1)  to change as a result of ‘recoil’ due to photon emission; (ii) 
the energy-angular momentum relationship in classical cyclotron radiation indicates that 
there could not have been any change in 1. The difficulty is further highlighted by the fact 
that linear momentum conservation prevents the final photon from being emitted in an 
eigenstate of angular momentum. 

In two earlier Letters (Lieu et af 1983, 1984) it was pointed out that, during cyclotron 
radiation, a non-trivial difficulty exists in the reconciliation of the basic conservation 
laws of energy, momentum, and angular momentum. In the present letter it will be 
shown that the same difficulty is also present in quantum mechanical considerations. 
The problem is seen in part during the search for correspondence between the quantum 
transition probability and the classical radiation rate. It appears more explicit when 
the conservation laws are formulated in terms of operators in the Schrodinger picture. 

Controversy existed regarding the behaviour of the synchrotron radiation rate at 
high frequencies. A quantum mechanical calculation (Parzen 195 1) reveals that the 
spectral emissivity differs from the classical result by a factor exp(-A2w2/ c2) (where 
w is the radiation angular frequency, and h 2  = h c / e H  where H is the magnetic field). 
At high photon energies this would lead to a drastic depletion of the emission rate as 
compared with the classical value-a phenomenon not observed in the laboratory. 
Later works (Judd et a1 1952, Olsen and Wergeland 1952) revealed an ‘error’ in the 
calculations of Parzen (1951). Apart from the energy quantum number n (i.e. Landau 
level), the electron state is also characterised by a quantum number I (radial position 
of guiding centre, see Johnson and Lippmann 1949) which is a degeneracy. In Parzen 
(1951) the transition probability was computed for a ( n  -, n’, I - ,  I ‘ =  I )  transition, 
whereas the other two papers showed that the cross-section must be summed over all 
the possible degeneracies I’ which the electron can attain. Such a summation procedure 
removes the ultraviolet cutoff factor and the classical formula is once again obtained. 

However, it must be pointed out that the price paid by the undertaking of these 
latter authors is a violation of basic conservation laws. The quantum mechanical 
emission of a photon is accompanied by transition of the electron (n, I )  -, (n’, 1 ’ )  with 
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the conservation of energy and angular momentum: 

E,  = ( n  - n’)wc = mu,: J :  = ( n  - l ) - ( n ’ -  1 ’ )  (1) 

since the angular momentum of the electron is ( n  - I )  (units h = 1 are used). In Lieu 
et a1 (1983) it was shown that, in cyclotron radiation, the mth harmonic carries a total 
angular momentum J :  = m. Use of this information in (1) then yields 

1 ‘ -  1 = 0. (2)  

Among the transition probability computations given earlier, only the procedure 
adopted by Parzen (1951) is consistent with (2). 

The present work is not intended to scrutinise the correctness of such quantum 
calculations. The situation is, in fact, rather paradoxical. Quite apart from the fact 
that the allowance of a change in 1 leads to the correct radiation formula, it is difficult 
to imagine how I can stay fixed during the emission of a high-energy y-photon. Clearly 
the guiding centre ought to respond to such a large transfer of linear momentum as 
explained in Lieu et a1 1983). 

This brings us to a consideration of linear momentum conservation in relation to 
the other conservation laws, from a quantum mechanical point of view. In Avron et 
a1 (1978) it was shown that translational invariance of the entire problem leads to an 
operator II which commutes with the total Hamiltonian H of electron and radiation 
fields (including interaction), i.e. 

[n, H ]  = 0. 

In quantum mechanics we write the radiation (photon) momentum as P = hk, so that 
the x and y components of II’ may be written in the following manner 

L. 

where the ‘ ’ denotes operators in the Schrodinger Picture (and motion in th? z 
direction is ignored). Following Lieu et a1 (1983), we then construct the operator II’, 
given by 

fi’= (mew,)’[(;; + 9;) + 2 ~ ’ ( y ~ i ,  - iOiy) + h 4 ( i ;  + f : ) ]  (3) 
and this operator is conserved in electromagnetic interactions. 

Now the important point is that for the two-particle final state I?’ does not commute 
with the angular momentum operator of any individual particle. For the photon we 
can verify that? 

[.f:, I?’] = [ f ~ ,  A’] = -2imewcfi2(i0ix - y o i y )  
where .f, and f, are respectively total and orbital a!gular momentum of the photon 
(they differ by a spin operator,phich commutes with n2). Since the initial one-particle 
state ( n ,  1) is an eigenstate of II’, linear m2mentum conservation prevents the photon 
from being emitted in an eigenstate of J;.  The classical correspondence of such a 
conclusion is absurd, since we know that J :  = m for the mth harmonic. 

This work is supported by NSERC (Ottawa) grants 694366  to Dr D Leahy and 
69-1565 to Dr D Venkatesan. The author thanks Professor M A Ruderman for helpful 
discussions. 

t It is also ea,sy to veXify that fi’ does commute with the lour[ angular momentum of the electron and 
photon, i.e. [I12,j: + I : ] = O .  
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